Roll No.----

Paper Code
3 7 5

(To be filled in the OMR Sheet)

प्रश्नपुस्तिका क्रमांक Question Booklet No.

प्रश्नपुस्तिका सीरीज Question Booklet Series

O.M.R. Serial No.

BCA (Fourth Semester) Examination, July-2022

BCA-404(N)

Optimization Techniques

Time: 1:30 Hours Maximum Marks-100

जब तक कहा न जाय, इस प्रश्नपुस्तिका को न खोलें

- निर्देश: –
- परीक्षार्थी अपने अनुक्रमांक, विषय एवं प्रश्नपुस्तिका की सीरीज का विवरण यथास्थान सही
 सही भरें,
 अन्यथा मृल्यांकन में किसी भी प्रकार की विसंगित की दशा में उसकी जिम्मेदारी स्वयं परीक्षार्थी की होगी।
- 2. इस प्रश्नपुस्तिका में 100 प्रश्न हैं, जिनमें से केवल 75 प्रश्नों के उत्तर परीक्षार्थियों द्वारा दिये जाने है। प्रत्येक प्रश्न के चार वैकल्पिक उत्तर प्रश्न के नीचे दिये गये हैं। इन चारों में से केवल एक ही उत्तर सही है। जिस उत्तर को आप सही या सबसे उचित समझते हैं, अपने उत्तर पत्रक (O.M.R. ANSWER SHEET) में उसके अक्षर वाले वृत्त को काले या नीले बाल प्वांइट पेन से पूरा भर दें। यदि किसी परीक्षार्थी द्वारा किसी प्रश्न का एक से अधिक उत्तर दिया जाता है, तो उसे गलत उत्तर माना जायेगा।

K-375

- 3. प्रत्येक प्रश्न के अंक समान हैं। आप के जितने उत्तर सही होंगे, उन्हीं के अनुसार अंक प्रदान किये जायेंगे।
- 4. सभी उत्तर केवल ओ०एम०आर० उत्तर पत्रक (O.M.R. ANSWER SHEET) पर ही दिये जाने हैं। उत्तर पत्रक में निर्धारित स्थान के अलावा अन्यत्र कहीं पर दिया गया उत्तर मान्य नहीं होगा।
- 5. ओ॰एम॰आर॰ उत्तर पत्रक (O.M.R. ANSWER SHEET) पर कुछ भी लिखने से पूर्व उसमें दिये गये सभी अनुदेशों को सावधानीपूर्वक पढ़ लिया जाय।
- 6. परीक्षा समाप्ति के उपरान्त परीक्षार्थी कक्ष निरीक्षक को अपनी ओ०एम०आर० शीट उपलब्ध कराने के बाद ही परीक्षा कक्ष से प्रस्थान करें।
- 7. निगेटिव मार्किंग नहीं है।
- महत्वपूर्ण : प्रश्नपुस्तिका खोलने पर प्रथमतः जॉच कर देख लें कि प्रश्नपुस्तिका के सभी पृष्ठ भलीमॉित छपे हुए हैं। यदि प्रश्नपुस्तिका में कोई कमी हो, तो कक्ष निरीक्षक को दिखाकर उसी सीरीज की दूसरी प्रश्नपुस्तिका प्राप्त कर लें।

Rough Work / रफ कार्य

1.	To resolve degeneracy at the initial solution, a very small quantity is allocated in
	cell.
	(A) Occupied
	(B) Basic
	(C) Non-basic
	(D) Unoccupied
2.	method is an alternative method of solving a Linear Programming
	Problem involving artificial variables.
	(A) Simplex method
	(B) Big-M
	(C) Dual simplex
	(D) Graphical
3.	If the primal problem has n constraints and m variables then the number of
	constraints in the dual problem is:
	(A) mn
	(B) $m+n$
	(C) m-n
	(D) m/n
4.	The assignment problem is a special case of transportation problem in which?
	(A) Number of origins are less than the number of destinations
	(B) Number of origins are greater than the number of destinations
	(C) Number of origins are greater than or equal to the number of destinations
	(D) Number of origins equals the number of destinations
5.	The transportation problem deals with the transportation of
	(A) A single product from a source to several destinations
	(B) A single product from several sources to several destinations
	(C) A single product from several sources to a destination
	(D) A multi-product from several sources to several destination

6.	Cells in the transportation problem having positive allocation will be called:						
	(A) Cells						
	(B) Occupied						
	(C) Unoccupied						
	(D) Table						
7.	If primal linear programming problem has a finite solution, then dual linear						
	programming problem should have						
	(A) Finite solution						
	(B) Infinite solution						
	(C) Bounded solution						
	(D) Alternative solution						
8.	The right hand side constant of a constraint in a primal problem appears in the						
	corresponding. Dual as						
	(A) Coefficient in the objective function						
	(B) A right hand side constant of a function						
	(C) An input output coefficient						
	(D) A left hand side constraint coefficient variable						
9.	If all C_{ij} values in the entering variable column of the simplex table are negative,						
	then						
	(A) There are multiple solutions						
	(B) There exist no solution						
	(C) Solution is degenerate						
	(D) Solution is unbounded						
10.	The variable is used for the greater than or equal to (\geq) type of						
	constraint.						
	(A) Only slack						
	(B) Surplus and Artificial						
	(C) Only Artificial						
	(D) Basic						

11.	Graphical method is also known as						
	(A) Simplex method						
	(B) Dual simplex method						
	(C) Big-M method						
	(D) Search-Approach method						
12.	Which among the following costs is the expense of storing inventory for a specified						
	period of time?						
	(A) Purchasing cost						
	(B) Carrying cost						
	(C) Financial cost						
	(D) Storing cost						
13.	When a doctor attends to an emergency case leaving his regular service is called:						
	(A) Reneging						
	(B) Balking						
	(C) Pre-emptive queue discipline						
	(D) Non Pre-Emptive queue discipline						
14.	The system of loading and unloading of goods usually follows:						
	(A) LIFO						
	(B) FIFO						
	(C) SIRO						
	(D) SBP						
15.	Cars arrive at a service station according to Poison's distribution with mean rate of						
	5 per hour. The Service time per car is exponential with a mean of 10 minutes. At						
	steady state, the average waiting time in the queue is:						
	(A) 10 minutes						
	(B) 25 minutes						
	(C) 25 minutes						
	(D) 50 minutes						

6. The term jockeying in queuing theory refers to:						
	(A) Not entering the long queue					
	(B) Leaving the queue					
	(C) Shifting form one queue to another parallel queue					
	(D) None of the above					
17.	Cost of goods available for sale can be calculated be:					
	(A) Opening stock + purchases					
	(B) Closing stock + purchases					
	(C) Opening stock + purchases – closing stock					
	(D) None					
18.	The unused material are returned to stores with a material and note.					
	(A) Acceptance					
	(B) Transfer					
	(C) Return					
	(D) None					
19.	In the formula of Economic Order Quantity, the alphabet 'O' stands for					
	(A) Ordering level					
	(B) Ordering cost					
	(C) Ordering & carrying cost					
	(D) None					
20.	Replacement is said to be necessary if:					
	(A) Failure rate is increasing					
	(B) Failure cost is increasing					
	(C) Failure probability is increasing					
	(D) Any of these					

21.	A machine is replaced when an average running cost?							
	(A) Is not equal to the current running cost							
	(B) Till the current period is greater than that of next period							
	(C) Of the current period is greater than that of the next period							
	(D) of the current period is less than that of next period							
22.	If the order quantity (size of order) is increased,							
	(A) Holding costs decrease and ordering costs increase							
	(B) Holding costs increase and ordering costs decrease							
	(C) The total costs increase and then decrease							
	(D) Storage cost as well as stock out cost increases							
23.	Which of the following methods is used to verify the optimality of the current							
solution of the transportation problem?								
	(A) Least cost method							
	(B) Vogel's approximation method							
	(C) Modified distribution method							
	(D) All of the above							
24.	The initial solution of a transportation problem can be obtained by applying any							
	known method. However, the only condition is that:							
	(A) The solution be optimal							
	(B) The rim conditions are satisfied							
	(C) The solution not be degenerate							
	(D) All of the above							

25.	The purpose of dummy source or dummy destination in a transportation problem is
	to:
	(A) Prevent the solution from becoming degenerate
	(B) Obtain a balance between total supply and total demand
	(C) Make certain that the total cost does not exceed some specified figure
	(D) Provide a means of representing a dummy problem
26.	$Minimize Z = \underline{\hspace{1cm}}.$
	(A) -maximize (Z)
	(B) -maximize(-Z)
	(C) Maximize(-Z)
	(D) None of the above
27.	Which technique is used in finding a solution for optimizing a given objective, such
	as profit maximization or cost reduction under certain constraints?
	(A) Quailing theory
	(B) Waiting Line
	(C) Both (A) and (B)
	(D) Linear Programming
28.	Or has a characteristic that it is done by a team of:
	(A) Scientists
	(B) Mathematicians
	(C) Academics
	(D) All of the above

29.	Operations research was known as an ability to win a war without really going in						
	to						
	(A) Battle field						
	(B) Fighting						
	(C) The opponent						
	(D) Both (A) and (B)						
30.	In operations research, the are prepared for situations.						
	(A) Mathematical models						
	(B) Physical models diagrammatic						
	(C) Diagrammatic models						
	(D) None of these						
31.	In marking assignments, which of the following should be preferred?						
	(A) Only row having single zero						
	(B) Only column having single zero						
	(C) Only row/column having single zero						
	(D) Column having more than one zero						
32.	Maximization assignment problem is transformed into a minimization problem						
	by						
	(A) Adding each entry in a column from the maximum value in that column						
	(B) Subtracting each entry in a column form the maximum value in that column						
	(C) Subtracting each entry in the table from the maximum value in that table						
	(D) Adding each entry in the table from the maximum value in that table						
33.	While solving an assignment problem, an activity is assigned to a resource with						
	zero opportunity cost because objective is to						
	(A) Minimize total cost of assignment						
	(B) Reduce total cost of assignment to zero						
	(C) Reduce cost of that assignment to zero						
	(D) Maximize total cost of assignment						

Given arrival rate = 15/hr., service rate = 20/hr., the value of traffic intensity is					
(A) 3/4					
(B) 4/3					
(C) 3/5					
(D) 4/5					
When D = 18000, holding cost = Rs. 1.20, set-up cost = Rs. 400, EOQ =					
(A) 3465					
(B) 3750					
(C) 3500					
(D) 4000					
In the optimal simplex table, $Z_j - C_j = 0$ value indicates					
(A) Alternative solution					
(B) Bounded solution					
(C) Infeasible solution					
(D) Unbounded solution					
The process that performs the services to the customer is known as					
(A) Queue					
(B) Service channel					
(C) Customers					
(D) Server					
The coefficient of an artificial variable in the objective function of penalty method					
are always assumed to be					
(A) 0					
(B) 1					
(C) M					
(D) -M					

39.	The average arrival rate in a single server queuing system is 10 customers per hour						
	and average service rate is 15 customers per hour. The average time that a customer						
	must wait before it is taken up for service shall be minutes.						
	(A) 6						
	(B) 8						
	(C) 10						
	(D) 12						
40.	The assignment problem will have alternate solutions when the total opportunity						
	cost matrix has:						
	(A) At least one zero in each row and column						
	(B) When all rows have two zero						
	(C) When there is a tie between zero opportunity cost cells						
	(D) If two diagonal elements are zeros						
41.	Linear Programming Problem is a technique of finding the:						
	(A) Optimal value						
	(B) approximate value						
	(C) Initial value						
	(D) Infeasible value						
42.	Which of the following is true in case of simplex method?						
	(A) The constants of constraints may be positive or negative						
	(B) Inequalities are not converted into equations						
	(C) It cannot be used for two variable problems						
	(D) It is an iterative procedure						

43.	The simplex method is the basic method for:					
	(A) Value analysis					
	(B) Operation research					
	(C) Linear programming					
	(D) Model analysis					
44.	In simplex, a maximization problem is optimal when $C_j - Z_J$ values are?					
	(A) Either zero or positive					
	(B) Either zero or negative					
	(C) Only positive					
	(D) Only negative					
45.	The Intersection value of key column and key row is called:					
	(A) Vital element					
	(B) Important element					
	(C) key element					
	(D) Basic element					
46.	The Cj row in a simplex table for maximization represents:					
	(A) Profit per unit					
	(B) Constraints					
	(C) Gross profit					
	(D) Net profit					
47.	The method used to solve LPP with use of artificial variables is called:					
	(A) Dual simplex					
	(B) Graphical					
	(C) Big-M					
	(D) Transportation Problem					

48.	In simplex method slack variables are assigned zero coefficients because:						
	(A) No contribution in objective function						
	(B) High contribution in objective function						
	(C) Divisor contribution in objective function						
	(D) Base contribution in objective function						
49.	Which of the following is a type of Linear programming problem?						
	(A) Manufacturing problem						
	(B) Diet problem						
	(C) transportation problems						
	(D) All of the above						
50.	The maximum value of $Z = 3x + 4y$ subjected to constraints $x + y \le 4$, $x \ge 0$ and y						
	≥ 0 is:						
	(A) 12						
	(B) 14						
	(C) 16						
	(D) None of the above						
51.	Traffic intensity is given by:						
	(A) Mean arrival rate/mean service rate						
	(B) $\lambda \times \mu$						
	(C) μ/λ						
	(D) Number present in the queue/Number served						
52.	A feasible solution to an LP problem:						
	(A) Must satisfy all of the problem's constraints simultaneously						
	(B) Need not satisfy all of the constraints, only some of them						
	(C) Must be a corner point of the feasible region						
	(D) Must optimize the value of the objective function						

Which of the following is not an inventory? 53. (A) Machines (B) Raw material (C) Finished products (D) Consumable tool The order cost per order of an inventory is Rs. 400 with an annual carrying cost of 54. Rs. 10 per unit. The Economic Order quantity (EOQ) for an annual demand of 2000 units is: (A) 400 (B) 440 (C) 480 (D) 500 55. The following classes of costs are usually involve in inventory decisions except: (A) Cost of ordering (B) Carrying cost (C) Cost of shortages (D) Machining cost Which of the following is the correct assumption for replacement policy when 56. money value does not change with time? (A) No capital cost (B) No scrap value (C) Constant scrap value (D) Zero maintenance cost 57. Replacement is said to be necessary if: (A) Failure rate is increasing (B) Failure cost is increasing (C) Failure probability is increasing (D) Any of these If a machine becomes old, then the failure rate expected will be: 58. (A) Constant (B) Increasing

(C) Decreasing

(D) We cannot say

59.	Group replacement policy applies to:								
	(A) Irreparable items								
	(B) Reparable items								
	(C) Items that fail partially								
	(D) Items that fail completely and suddenly								
60.	A minimization problem can be converted into a maximization problem by								
	changing the sing of								
	coefficient in the								
	(A) Constraints								
	(B) Objective function	on							
	(C) Both (A) and (B))							
	(D) None of the above	ve							
61.	The time required for two operations cutting and binding of 5 jobs are as follows:								
	Job No	1	2	3	4	5			
	Cutting (min)	8	6	2	5	7			
	Binding (min)	8	7	7	6	4			
	What is the optimal sequence of scheduling the job?								
	(A) 2-4-1-3-5								
	(B) 3-4-2-1-5								
	(C) 1-2-3-4-5								
	(D) 3-5-2-4-1								
62.	Sequencing is a subse	t of:							
	(A) Routing								
	(B) Scheduling								
	(C) Expediting								
	(D) None of these								
63.	Priority queue may be classified as:								
	(A) Finite or infinite								
	(B) Limited or unlimited								
	(C) Pre-emptive and	non-pr	e-empt	ive					
	(D) All of the above								

64.	Server mechanism in a queuing system is characterized by:
	(A) Server Behaviour
	(B) Customer behaviour
	(C) Customer in the system
	(D) All of the above
65.	Customer behaviour in which the customer moves from one queue to another in a
	multiple channel, situation is
	(A) Balking
	(B) Reneging
	(C) Jockeying
	(D) alternating
66.	Which of the following characteristics apply to the queuing system?
	(A) Customer population
	(B) Arrival process
	(C) Both (A) & (B)
	(D) Neither (A) nor (B)
67.	Who is known as father of queuing theory?
	(A) George Dantzig
	(B) A. K. Erlang
	(C) George Kendall
	(D) Both (B) and (C)
68.	Total time spend by a server with his customers is known as
	(A) Utilization Factor
	(B) Waiting time
	(C) Traffic Intensity
	(D) Both (A) and (C)

69.	Johnson's rule is used for:
	(A) Queuing problem
	(B) Sequencing problem
	(C) Both (A) and (B)
	(D) None of the above
70.	The replacement policy that is imposed on an item irrespective of its failure is:
	(A) Group replacement
	(B) Individual replacement
	(C) Repair spare replacement
	(D) Successive replacement
71.	In an assignment problem involving 5 workers and 5 jobs, total number of
	assignments possible are
	(A) 5
	(B) 10
	(C) 15
	(D) 20
72.	The optimum level of inventory is popularly referred to as the
	(A) Minimum stock level
	(B) Re-order stock level
	(C) Economic order quantity
	(D) None of these
73.	To resolve degeneracy at the initial solution, a very small quantity is allocated
	in
	(A) Occupied
	(B) Unoccupied
	(C) No
	(D) Finite

71	In month of the majority of the majority of the formation of
74.	In replacement analysis the maintenance cost is a function of:
	(A) Time
	(B) resale value
	(C) Initial investment(D) None of these
75	
75.	The following classes of costs are usually involved in inventory decisions except:
	(A) Cost of ordering (B) Corrying cost
	(B) Carrying cost (C) Cost of shortages
	(C) Cost of shortages(D) machining cost
76.	The time period between placing an order its receipt in stock is known as:
	(A) Lead time
	(B) Carrying time
	(C) Shortage time
	(D) Over time
77.	Group replacement policy is most suitable for:
, , ,	(A) Trucks
	(B) Street light bulbs
	(C) Machines
	(D) New cars
78.	In converting a less-than-or-equal constraint for use in a simplex table, we must
	add:
	(A) A surplus variable
	(B) A slack variable
	(C) An artificial variable
	(D) Both a surplus and a slack variable
79.	In the simplex method, the slack, surplus and artificial variables are:
	(A) Multiplied
	(B) Negative
	(C) Non-negative
	(D) Divided

80.	An LPP is defined as
	$Minimize Z=15x_1 + 12x_2$
	subject to
	$x_1 + 2x_2 \le 3$
	$2x_1 - 4x_2 \le 5$
	$x_1, x_2 \ge 0$
	The objective function of the dual of this LPP is:
	(A) Maximize $w = y_1 + y_2$
	(B) Maximize $w = y_1 + 2y_2$
	(C) Maximize $w = 2y_1 - 4y_2$
	(D) Maximize $w = 3y_1 + 5y_2$
81.	In n job and two machines (say M1 and M2) sequencing problems with order of
	processing the jobs is M1 M2
	(A) Job having minimum time on machine M2 is processed in the first
	(B) Job having minimum time on machine M2 is processed in the last
	(C) Job having minimum time on machine M1 is processed in the last
	(D) Job having maximum time of machine M2 is processed in the last
82.	The minimum number of line covering all zeros in a reduced cost matrix of order n
	can be
	(A) At least n
	(B) At most n
	(C) n - 1
	(D) $n + 1$
83.	In the standard form of LPP all constraints are of type.
	(A) Less than or equal to
	(B) Greater than or equal to
	(C) Equal to

(D) None of the above

84.	Dual of the dual is:
	(A) Primal
	(B) Dual
	(C) Either dual or primal
	(D) None of these
85.	Graphical method is used of there are only variables.
	(A) Four
	(B) Three
	(C) Two
	(D) None of the above
86.	The total time required to complete all the jobs in a job sequencing problem is
	known as:
	(A) Processing time
	(B) Waiting time
	(C) Elapsed time
	(D) Idle time
87.	In the Hungarian method of solving an assignment problem, the row reduction is
	obtained by:
	(A) Dividing each row by the elements of the row above it
	(B) Subtracting the elements of the row from the elements of the row above it
	(C) Subtracting the smallest element from all other elements of the row
	(D) Subtracting all the elements of the row from the highest element in the matrix
88.	When the total allocations in a transportation model of $m \times n$ size do not equal to
	m + n - 1 the situation is known as?
	(A) Unbalanced situation
	(B) Tie situation
	(C) Degeneracy
	(D) None of the above

- 89. In a transportation problem where the demand or requirement is equal to the available resource is known as:
 - (A) Balanced transportation problem
 - (B) Regular transportation problem
 - (C) Resource allocation transportation problem
 - (D) Simple transportation model
- 90. The Penalty of a row in a transportation problem is obtained by:
 - (A) Deducting the smallest element in the row from all other elements of the row
 - (B) Adding the smallest element in the row to all other elements of the row
 - (C) Deducting the smallest element in the row from the next highest element in that row
 - (D) Deducting the smallest element in the row from the highest element in that row
- 91. In the North-West corner method allocations are made:
 - (A) Starting from the left-hand side top corner
 - (B) Starting from the right-hand side top corner
 - (C) Starting from the lowest cost cell
 - (D) Starting from the lowest requirement and satisfying first
- 92. The assignment matrix is always a:
 - (A) Rectangular matrix
 - (B) Square Matrix
 - (C) Identity matrix
 - (D) None of the above

Series-	C	BCA 404(N) / K-375	Page - 22
	(D)	48 at (4, 2)	
	(C)	62 at (4, 0)	
	(B)	60 at (4, 2)	
	(A)	44 at (4, 2)	
97.	Max	simize $Z = 11x + 8y$ subject to $x \le 4, y \le 6, x + y \le 6, x \ge 0, y \ge 0$.	
	(D)	None of these	
	(C)	Virgenean approximation method	
	(B)	Vogel approximation method	
	(A)	Value addition method	
96.	In tr	ransportation problem VAM stands for:	
	(D)	Iconic model	
	(C)	Transshipment problem	
	(B)	Minimization model	
	(A)	Maximization model	
95.	The	transportation problem is basically:	
	(D)	Dummy column	
	(C)	Slack column	
	(B)	Idle column	
	(A)	Key column	
		wn as?	ŕ
94.	()	column which is introduced in the matrix to balance the rim require	ments, is
	(D)	Hungarian method	
	` ′	Vector method	
	(B)	graphical Method	
	(A)		
93.	The	Assignment Problem is solved by:	

- 98. A set of values of decision variable which satisfies the linear constraints and non-negativity condition of a L.P.P. is called its
 - (A) Unbounded solution
 - (B) Optimum solution
 - (C) Feasible solution
 - (D) None of these
- 99. Objective function of a linear programming problem is:
 - (A) A constraint
 - (B) Function to be optimized
 - (C) A relation between the variables
 - (D) None of these
- 100. Feasible region in the set of points which satisfy?
 - (A) The objective functions
 - (B) Some of the given constraints
 - (C) All of the given constraints
 - (D) None of these

DO NOT OPEN THE QUESTION BOOKLET UNTIL ASKED TO DO SO

- 1. Examinee should enter his / her roll number, subject and Question Booklet Series correctly in the O.M.R. sheet, the examinee will be responsible for the error he / she has made.
- 2. This Question Booklet contains 100 questions, out of which only 75 Question are to be Answered by the examinee. Every question has 4 options and only one of them is correct. The answer which seems correct to you, darken that option number in your Answer Booklet (O.M.R ANSWER SHEET) completely with black or blue ball point pen. If any examinee will mark more than one answer of a particular question, then the answer will be marked as wrong.
- 3. Every question has same marks. Every question you attempt correctly, marks will be given according to that.
- 4. Every answer should be marked only on Answer Booklet (O.M.R ANSWER SHEET). Answer marked anywhere else other than the determined place will not be considered valid.
- 5. Please read all the instructions carefully before attempting anything on Answer Booklet (O.M.R ANSWER SHEET).
- 6. After completion of examination, please hand over the <u>O.M.R. SHEET</u> to the Examiner before leaving the examination room.
- 7. There is no negative marking.

Note: On opening the question booklet, first check that all the pages of the question booklet are printed properly in case there is an issue please ask the examiner to change the booklet of same series and get another one.